Vol. 4, No. 7

THE SYSTEM Li3 BN2

TABLE 1

	X-Ray Data	on Forms of Li ₃ BN ₂	
Li ₃ BN ₂ (3) (1 atm. form)	Li ₃ BN ₂ *	Wentorf's phase(2) (quenched from high pressure)	Li3BN2(W)* (quenched from high pressure)
$\frac{d(\hat{A})}{I/I_o}$	$\frac{d(\hat{A})}{I/I_0}$	$\frac{d(\hat{A})}{I/I_o}$	$\frac{d(\hat{A})}{\underline{I/I}}$
3.81 m	3.73 10	5.60 m 3.60 s	5.57 20 3.61 70
3.50 s	3.47 50 3.27 10	3.50 mw 3.34 mw	
2.82 vs	2.78 100 2.67 20	3.25 w 3.08 ms	3.28 5 3.06 45
2.63 s	2.63 30	2.85 w 2.78 s	2.84 15 2.78 100
2.24 w	2.22 5	2.67 m 2.56 mw	2.67 40 2.59 15
2.07 vs	2.07 15 2.05 25	2.50 mw 2.35 w	2.50 5
1.93 W	1.91 5	2.25 m 2.15 ms	2.27 10 2.15 10
1.83 vw 1.74 m	1.74 10	2.07 VW 2.03 m 1.96 W	2.03 15 1.97 5
1.64 vs	1.69 5 1.64 20	1.92 w 1.85 mw	1.97 5 1.93 5 1.85 15 1.74 5 1.69 5 1.65 10
1.55 m	1.63 10 1.55 10	1.73 mw 1.68 vw	1.74 5 1.69 5
1.48 w		1.64 m 1.62 m	1.65 10 1.63 10
1.42 w		1.60 m 1.53 m	1.61 5
1.40 w		1.50 vw 1.44 w	
		1.41 w	

* X-ray results from present study; data taken on GE x-ray diffractometer with $CrK\alpha$ radiation; s=strong; m=medium; w=weak; v= very. Additional weak lines at smaller d-spacings are found in published data from references (2) and (3).

that of Li_3AlN_2 and the other members of an isomorphous series(6) formed by substitutions for Al^{3+} and for N^{3-} . Since the structures of these compounds are based on an anti-CaF₂ lattice (i.e., N^{3-} in Ca²⁺ sites), compression along <111> could result in a layer lattice of hexagonal symmetry with layers of close-packed N^{3-} ions perpendicular to the hexagonal "c" axis.

437

THE SYSTEM Li, BN,

The lath-like morphology of this form is best developed between 1000°C and 1400°C above 40 kb. Quenched runs from the liquid region above the melting curve of the high pressure form are characterized by fine-grained clusters of equant crystals, and the x-ray patterns differ somewhat in peak intensity from those of crystals quenched from the stability region of the phase. These differences appear to be related to a more random orientation obtained when preparing an x-ray slide with the material quenched from the liquid.

 $\text{Li}_3\text{BN}_2(W)$ is also markedly less soluble in water at room temperature than the low pressure form.

Results and Discussion

General

Our interpretation of the results is summarized in the P-T representation of Fig. 2 in which a large area of stability of $\text{Li}_3\text{BN}_2(W)$ exists. Some aspects of this interpretation need amplification.

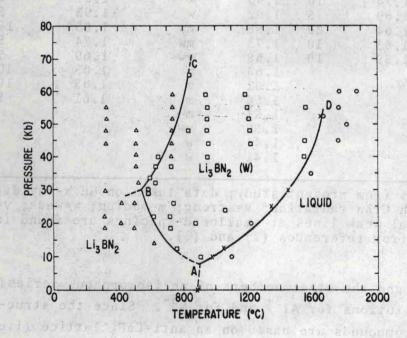


FIG. 2

Vol. 4, No. 7

P-T Diagram for the System Li3BN2 Quench data indicated by △,□,o; thermal analysis data by x

A clean separation of a homogeneous sample from the center of a cell in which a temperature gradient existed was sometimes difficult to obtain. Particularly near the P-T conditions where

438